

Electrochemistry Chapter 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemical processes are oxidation-reduction reactions in which:

- the energy released by a spontaneous reaction is converted to electricity or
- electrical energy is used to cause a nonspontaneous reaction to occur

$${}^{0}_{2\text{Mg}} \overset{0}{(s)} + \overset{0}{O}_{2} (g) \longrightarrow {}^{2+2-}_{2\text{MgO}} (s)$$

 $2Mg \longrightarrow 2Mg^{2+} + 4e^{-}$ *Oxidation* half-reaction (lose e^{-}) $O_2 + 4e^{-} \longrightarrow 2O^{2-}$ *Reduction* half-reaction (gain e^{-})

Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

$$Li^+, Li = +1; Fe^{3+}, Fe = +3; O^{2-}, O = -2$$

3. The oxidation number of oxygen is usually –2. In H_2O_2 and O_2^{2-} it is –1.

- The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1.
- Group IA metals are +1, IIA metals are +2 and fluorine is always -1.
- 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.

Identify the oxidation numbers of all the atoms in HCO_3^- ?

 HCO_{3}^{-} O = -2 H = +1 3x(-2) + 1 + ? = -1C = +4

Balancing Redox Equations

The oxidation of Fe²⁺ to Fe³⁺ by $Cr_2O_7^{2-}$ in acid solution?

1. Write the unbalanced equation for the reaction ion ionic form.

$$Fe^{2+} + Cr_2O_7^{2-} \longrightarrow Fe^{3+} + Cr^{3+}$$

2. Separate the equation into two half-reactions.

Oxidation:
$$Fe^{2+} \longrightarrow Fe^{3+}$$

Reduction: $Cr_2O_7^{2-} \longrightarrow Cr^{3+}$

3. Balance the atoms other than O and H in each half-reaction.

$$Cr_2O_7^2 \longrightarrow 2Cr^{3+}$$

Balancing Redox Equations

4. For reactions in acid, add H_2O to balance O atoms and H⁺ to balance H atoms.

 $Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$ $14H^+ + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$

5. Add electrons to one side of each half-reaction to balance the charges on the half-reaction.

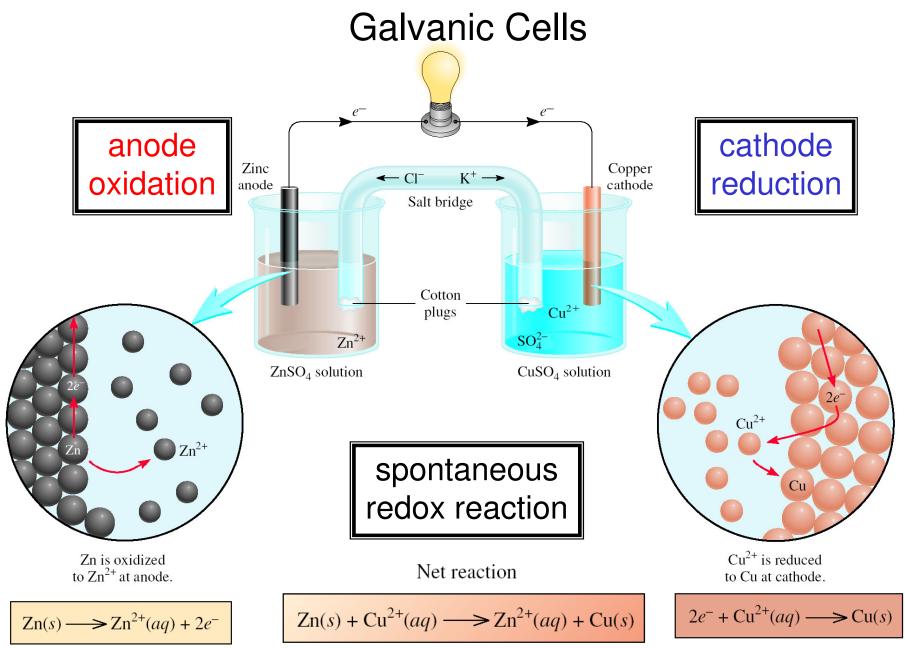
$$Fe^{2+} \longrightarrow Fe^{3+} + \underbrace{1e^{-}}_{2Cr^{3+}} + 7H_2O$$

 If necessary, equalize the number of electrons in the two halfreactions by multiplying the half-reactions by appropriate coefficients.

6

 $6e^{-} + 14H^{+} + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$

Balancing Redox Equations


7. Add the two half-reactions together and balance the final equation by inspection. The number of electrons on both sides must cancel.

Oxidation: $6Fe^{2+} \longrightarrow 6Fe^{3+} + 6e^{-1}$ Reduction: $6e^{-1} + 14H^{+} + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O^{-1}$ $14H^{+} + Cr_2O_7^{2-} + 6Fe^{2+} \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O^{-1}$

8. Verify that the number of atoms and the charges are balanced.

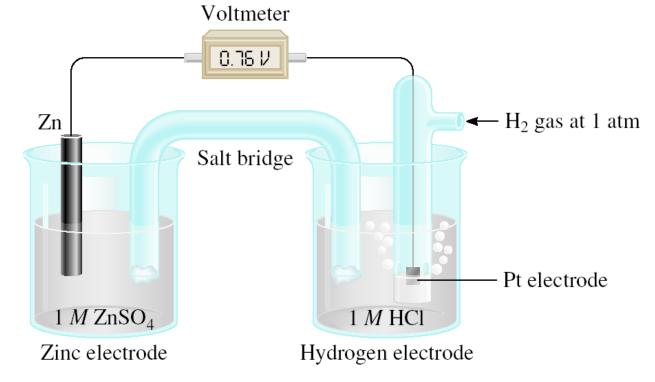
$$14x1 - 2 + 6 \times 2 = 24 = 6 \times 3 + 2 \times 3$$

 For reactions in basic solutions, add OH⁻ to both sides of the equation for every H⁺ that appears in the final equation.

Galvanic Cells

The difference in electrical potential between the anode and cathode is called:

- cell voltage
- electromotive force (emf)
- cell potential

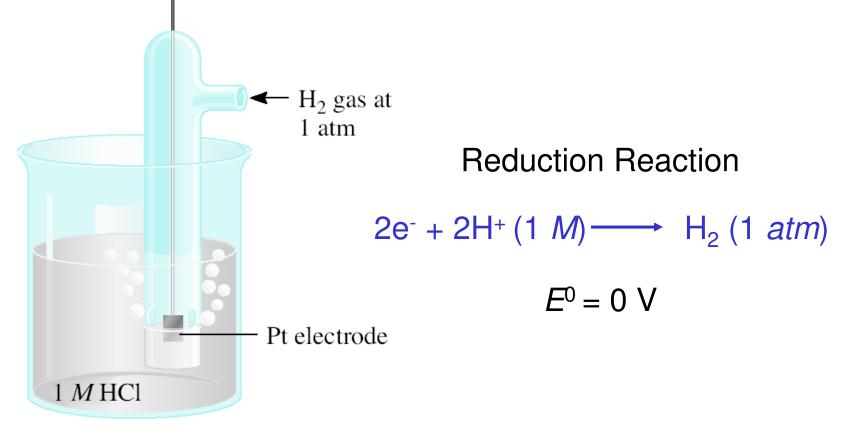


cathode

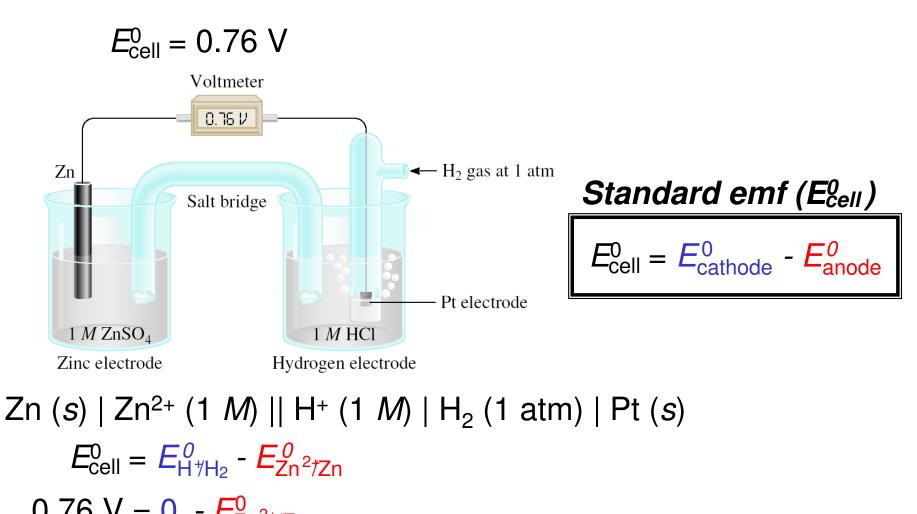
$$Zn (s) + Cu^{2+} (aq) \longrightarrow Cu (s) + Zn^{2+} (aq)$$

$$[Cu^{2+}] = 1 M \text{ and } [Zn^{2+}] = 1 M$$
Cell Diagram
phase boundary
$$Zn (s) = 2n^{2+} (1 M) = 2n^{2+} (1 M$$

salt bridge

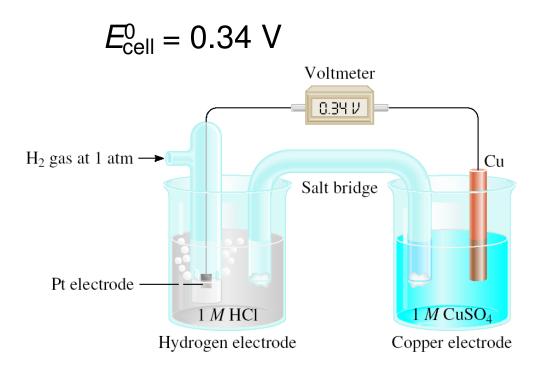

Zn (s) | Zn²⁺ (1 M) || H⁺ (1 M) | H₂ (1 atm) | Pt (s)

Anode (oxidation): $Zn(s) \longrightarrow Zn^{2+}(1 M) + 2e^{-1}$


Cathode (reduction): $2e^{-} + 2H^{+} (1 M) \longrightarrow H_{2} (1 atm)$

$$Zn(s) + 2H^+(1 M) \longrightarrow Zn^{2+} + H_2(1 atm)$$

Standard reduction potential (E^0) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm.



Standard hydrogen electrode (SHE)

$$E_{Zn^{2+}/Zn}^{0} = -0.76 V$$

 $Zn^{2+}(1 M) + 2e^{-} \longrightarrow Zn$ $E^{0} = -0.76 V$

12

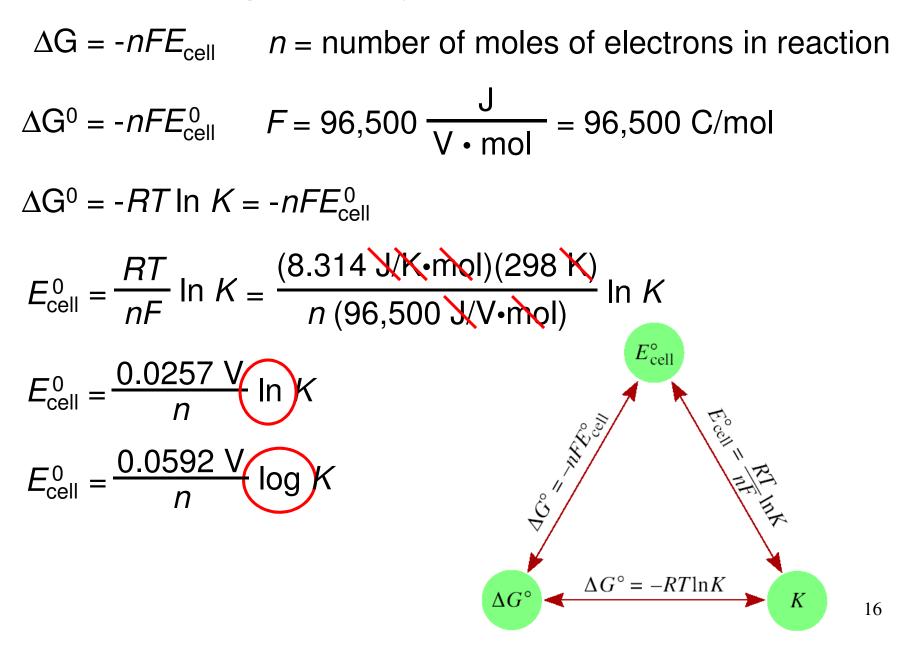
$$E_{cell}^{0} = E_{cathode}^{0} - E_{anode}^{0}$$
$$E_{cell}^{0} = E_{Cu}^{0}{}^{2+/Cu} - E_{H^{+/H_{2}}}^{0}$$
$$0.34 = E_{Cu}^{0}{}^{2+/Cu} - 0$$
$$E_{Cu}^{0}{}^{2+/Cu} = 0.34 \text{ V}$$

Pt (s) | H₂ (1 atm) | H⁺ (1 M) || Cu²⁺ (1 M) | Cu (s) Anode (oxidation): H₂ (1 atm) \longrightarrow 2H⁺ (1 M) + 2e⁻ Cathode (reduction): 2e⁻ + Cu²⁺ (1 M) \longrightarrow Cu (s) H₂ (1 atm) + Cu²⁺ (1 M) \longrightarrow Cu (s) + 2H⁺ (1 M) 13

TABLE 19.1 Standard Reduction Potentials at 25°C*

	Half-Reaction	<i>E</i> °(V)	
•	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.87	
	$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.07	
	$\operatorname{Co}^{3^+}(aq) + e^- \longrightarrow \operatorname{Co}^{2^+}(aq)$	+1.82	
	$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$	+1.77	
	$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	+1.70	
	$\operatorname{Ce}^{4+}(aq) + e^{-} \longrightarrow \operatorname{Ce}^{3+}(aq)$	+1.61	
	$\operatorname{MnO}_{4}^{-}(aq) + 8\operatorname{H}^{+}(aq) + 5e^{-} \longrightarrow \operatorname{Mn}^{2+}(aq) + 4\operatorname{H}_{2}\operatorname{O}$	+1.51	
	$\operatorname{Au}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Au}(s)$	+1.50	
	$\operatorname{Cl}_2(g) + 2e^- \longrightarrow 2\operatorname{Cl}^-(aq)$	+1.36	
	$\operatorname{Cr}_2\operatorname{O}_7^{2-}(aq) + 14\operatorname{H}^+(aq) + 6e^- \longrightarrow 2\operatorname{Cr}^{3+}(aq) + 7\operatorname{H}_2\operatorname{O}$	+1.33	
	$MnO_2(s) + 4H^+(aq) + 2e^- \longrightarrow Mn^{2+}(aq) + 2H_2O$	+1.23	
	$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O$	+1.23	
	$\operatorname{Br}_2(l) + 2e^- \longrightarrow 2\operatorname{Br}^-(aq)$	+1.07	
	$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.96	
	$2\text{Hg}^{2+}(aq) + 2e^{-} \longrightarrow \text{Hg}_{2}^{2+}(aq)$	+0.92	
	$\operatorname{Hg}_{2}^{2+}(aq) + 2e^{-} \longrightarrow 2\operatorname{Hg}(l)$	+0.85	
	$\operatorname{Ag}^+(aq) + e^- \longrightarrow \operatorname{Ag}(s)$	+0.80	
	$\operatorname{Fe}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Fe}^{2+}(aq)$	+0.77	
	$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	+0.68	
	$MnO_4^-(aq) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59	
gent	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.53	ent
ting ag	$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.40	ag
	$\operatorname{Cu}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Cu}(s)$	+0.34	ing
idis	$\operatorname{AgCl}(s) + e^{-} \longrightarrow \operatorname{Ag}(s) + \operatorname{Cl}^{-}(aq)$	+0.22	duc
Increasing strength as oxidizing agent	$\mathrm{SO}_4^{2-}(aq) + 4\mathrm{H}^+(aq) + 2e^- \longrightarrow \mathrm{SO}_2(g) + 2\mathrm{H}_2\mathrm{O}$	+0.20	Increasing strength as reducing agent
	$\operatorname{Cu}^{2+}(aq) + e^{-} \longrightarrow \operatorname{Cu}^{+}(aq)$	+0.15	1 as
	$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13	lgth
trer	$2\mathrm{H}^+(aq) + 2e^- \longrightarrow \mathrm{H}_2(g)$	0.00	trer
с СС	$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13	00 00
usin	$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14	usin
ser	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	-0.25	ser
Inc	$\operatorname{Co}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Co}(s)$	-0.28	Inc
	$PbSO_{4}(s) + 2e^{-} \longrightarrow Pb(s) + SO_{4}^{2-}(aq)$ $Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.31	
	$\operatorname{Cd}^{-\gamma}(aq) + 2e \longrightarrow \operatorname{Cd}(s)$	-0.40	
	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s)$	-0.44	
	$\operatorname{Cr}^{(aq)} + 3e \longrightarrow \operatorname{Cr}(s)$ $\operatorname{Zn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$	-0.74	
		-0.76	
	$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$ $Mn^{2+}(aq) + 2e^- \longrightarrow Mn(s)$	-0.83 -1.18	
	$\operatorname{Al}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Al}(s)$	-1.18 -1.66	
	$\operatorname{Re}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Re}(s)$	-1.85	
	$\operatorname{Be}^{(aq)} + 2e^{-} \longrightarrow \operatorname{Be}(s)$ $\operatorname{Mg}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Mg}(s)$	-1.83 -2.37	
	$\operatorname{Mg}^{-}(aq) + 2e^{-} \longrightarrow \operatorname{Mg}(s)$ $\operatorname{Na}^{+}(aq) + e^{-} \longrightarrow \operatorname{Na}(s)$	-2.37 -2.71	
	$\operatorname{Ca}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ca}(s)$	-2.71 -2.87	
	$\operatorname{Sr}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sr}(s)$	-2.87 -2.89	
	$\operatorname{SI}^{(dq)} + 2e^{-} \longrightarrow \operatorname{SI}(s)$ $\operatorname{Ba}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ba}(s)$	-2.89 -2.90	
		-2.90 -2.93	
	$\mathbf{K}^+(aq) + e^- \longrightarrow \mathbf{K}(s)$ $\mathbf{Li}^+(aq) + e^- \longrightarrow \mathbf{Li}(s)$	-2.93 -3.05	,
	$LI(uq) + c \longrightarrow LI(s)$	-5.05	

*For all half-reactions the concentration is 1 M for dissolved species and the pressure is 1 atm for gases. These are the standard-state values.


- E⁰ is for the reaction as written
- The more positive E⁰ the • greater the tendency for the substance to be reduced
- The half-cell reactions are • reversible
- The sign of E⁰ changes when the reaction is reversed
- Changing the stoichiometric coefficients of a half-cell reaction *does not* change the value of E^0

What is the standard emf of an electrochemical cell made of a Cd electrode in a 1.0 M Cd(NO₃)₂ solution and a Cr electrode in a 1.0 M Cr(NO₃)₃ solution?

 $Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$ $E^{0} = -0.40 V$ Cd is the stronger oxidizer Cd will oxidize Cr $Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s) \quad E^{0} = -0.74 \text{ V}$ Anode (oxidation): $Cr(s) \longrightarrow Cr^{3+}(1 M) + (3e^{-}) \times 2$ Cathode (reduction): $(2e) + Cd^{2+} (1 M) \longrightarrow Cd (s) \times 3$ $2Cr(s) + 3Cd^{2+}(1 M) \longrightarrow 3Cd(s) + 2Cr^{3+}(1 M)$ $E_{\text{cell}}^0 = E_{\text{cathode}}^0 - E_{\text{anode}}^0$ $E_{\rm cell}^0 = -0.40 - (-0.74)$ $E_{\rm cell}^0 = 0.34 \, {\rm V}$

15

Spontaneity of Redox Reactions

Spontaneity of Redox Reactions

TABLE 19.2 Relationships Among ΔG° , *K*, and E°_{cell}

ΔG°	к	E ° _{cell}	Reaction Under Standard-State Conditions
Negative	>1	Positive	Favors formation of products.
0	=1	0	Reactants and products are equally favored.
Positive	<1	Negative	Favors formation of reactants.

$$\Delta G^{0} = -RT \ln K = -nFE^{0}_{cell}$$

What is the equilibrium constant for the following reaction at 25°C? Fe²⁺ (*aq*) + 2Ag (*s*) \longrightarrow Fe (*s*) + 2Ag⁺ (*aq*)

$$E_{\rm cell}^0 = \frac{0.0257 \,\,{\rm V}}{n} \,\,{\rm ln}\,\,K$$

Oxidation: $2Ag \rightarrow 2Ag^{+} + 2e^{-}$ Reduction: $2e^{-} + Fe^{2+} \rightarrow Fe$ $E^{0} = E_{Fe^{2+}/Fe}^{0} - E_{Ag^{+}/Ag}^{0}$ $E^{0} = -0.44 - (0.80)$ $E^{0} = -1.24 \text{ V}$ $K = e^{\left(\frac{E_{cell}^{0} \times n}{0.0257 \text{ V}}\right)} = e^{\left(\frac{-1.24 \text{ V} \times 2}{0.0257 \text{ V}}\right)}$

 $K = 1.23 \times 10^{-42}$

The Effect of Concentration on Cell Emf $\Delta G = \Delta G^{0} + RT \ln Q \qquad \Delta G = -nFE \qquad \Delta G^{0} = -nFE^{0}$

 $-nFE = -nFE^0 + RT \ln Q$

Nernst equation

$$E = E^0 - \frac{RT}{nF} \ln Q$$

At 298 K

 $E = E^{0} - \frac{0.0257 \text{ V}}{n} \ln Q$ $E = E^{0} - \frac{0.0592 \text{ V}}{n} \log Q$

19

Will the following reaction occur spontaneously at 25°C if $[Fe^{2+}] = 0.60 M \text{ and } [Cd^{2+}] = 0.010 M?$ $Fe^{2+} (aq) + Cd (s) \longleftarrow Fe (s) + Cd^{2+} (aq)$

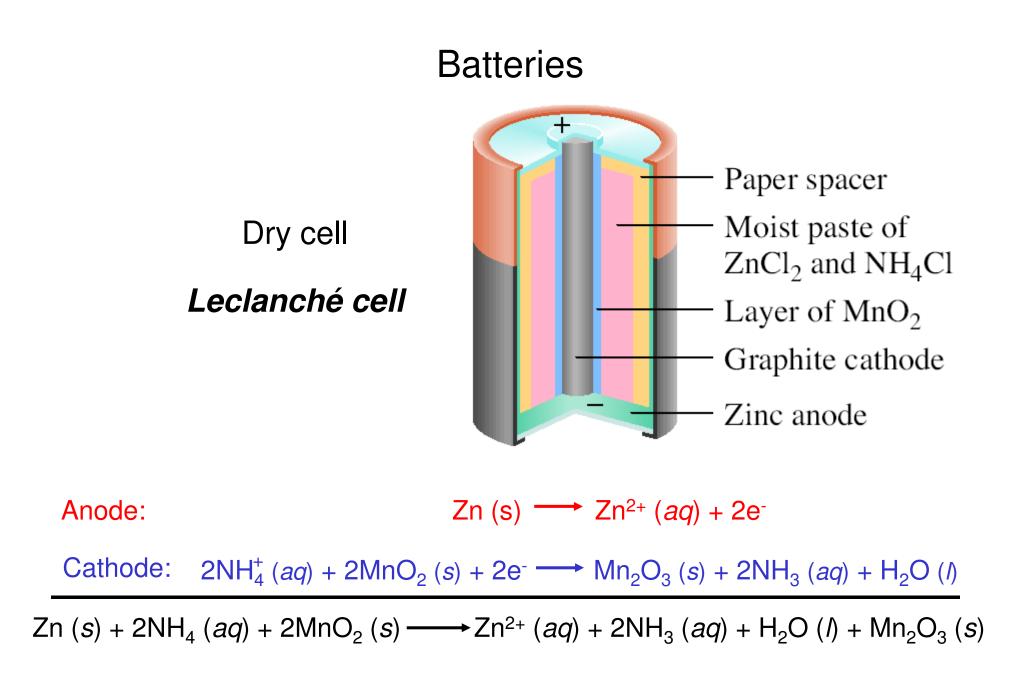
Oxidation:
$$Cd \rightarrow Cd^{2+} + 2e^{-}$$

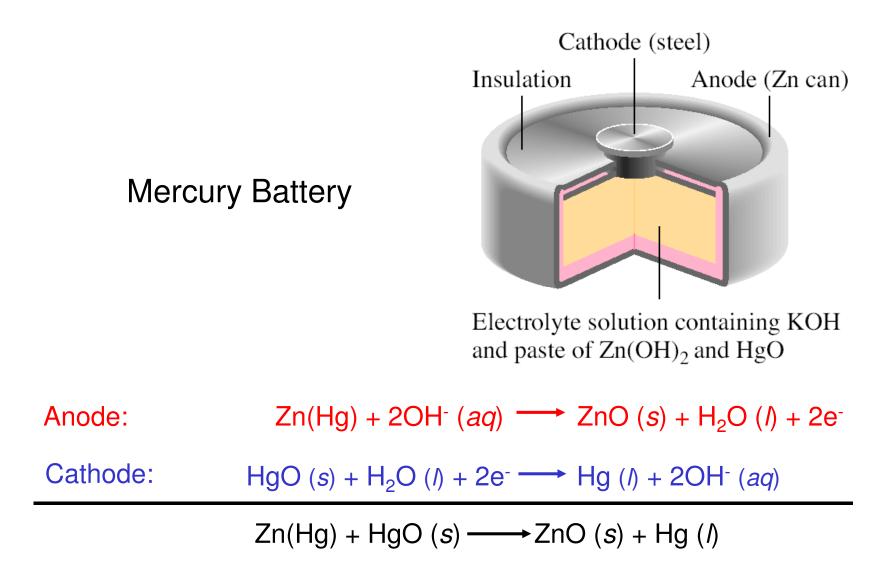
Reduction: $2e^{-} + Fe^{2+} \rightarrow 2Fe$
 $E^{0} = E_{Fe^{2+}/Fe}^{0} - E_{Cd^{2+}/Cd}^{0}$
 $E^{0} = -0.44 - (-0.40)$
 $E^{0} = -0.04 \text{ V}$
 $E = E^{0} - \frac{0.0257 \text{ V}}{n} \ln Q$
 $E = -0.04 \text{ V} - \frac{0.0257 \text{ V}}{2} \ln \frac{0.010}{0.60}$
 $E = 0.013$

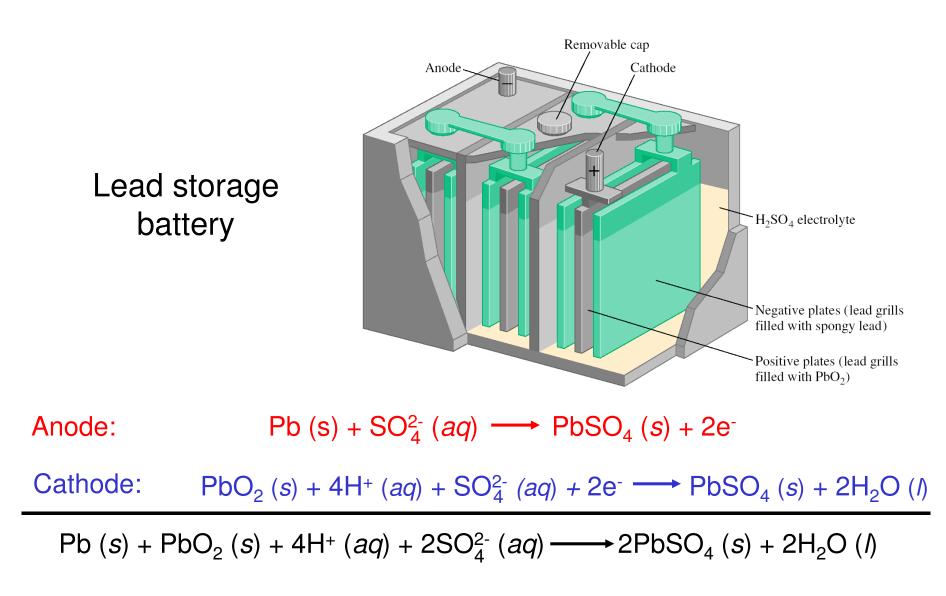
$$E > 0$$
 Spontaneous

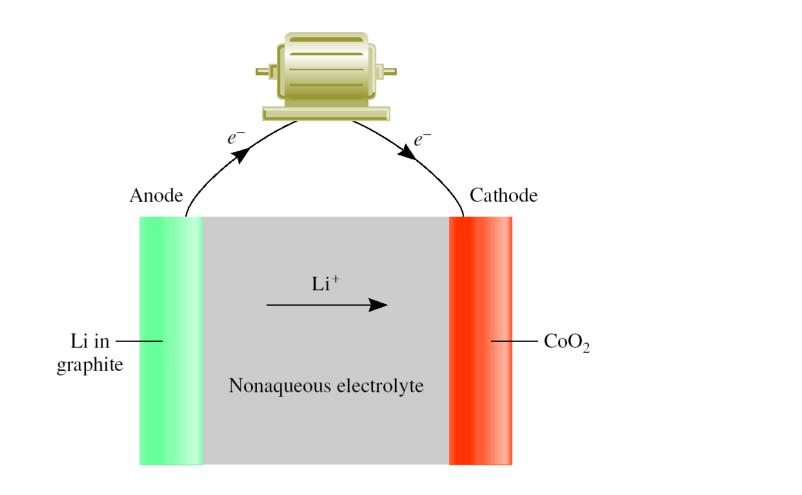
Concentration Cells

Galvanic cell from two half-cells composed of the *same* material but differing in ion concentrations.

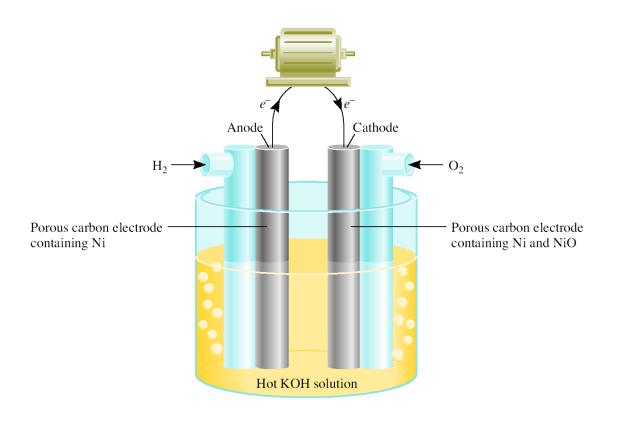

$$Zn(s) |Zn^{2+}(0.10 M)| |Zn^{2+}(1.0 M)| Zn(s)$$
Oxidation:
Reduction:


$$Zn(s) \longrightarrow Zn^{2+}(0.10 M) + 2e^{-}$$
Overall:


$$Zn^{2+}(1.0 M) + 2e^{-} \longrightarrow Zn(s)$$
Overall:

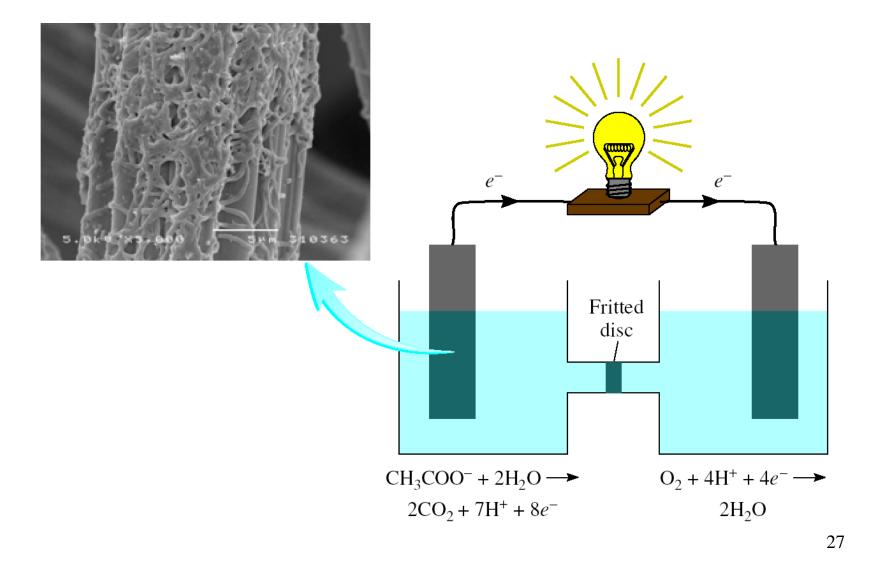

$$E = E^{\circ} - \frac{0.0257 V}{2} \ln \frac{[Zn^{2+}]_{dil}}{[Zn^{2+}]_{conc}}$$

$$E = 0 - \frac{0.0257 V}{2} \ln \frac{0.10}{1.0} = 0.0296 V$$
21



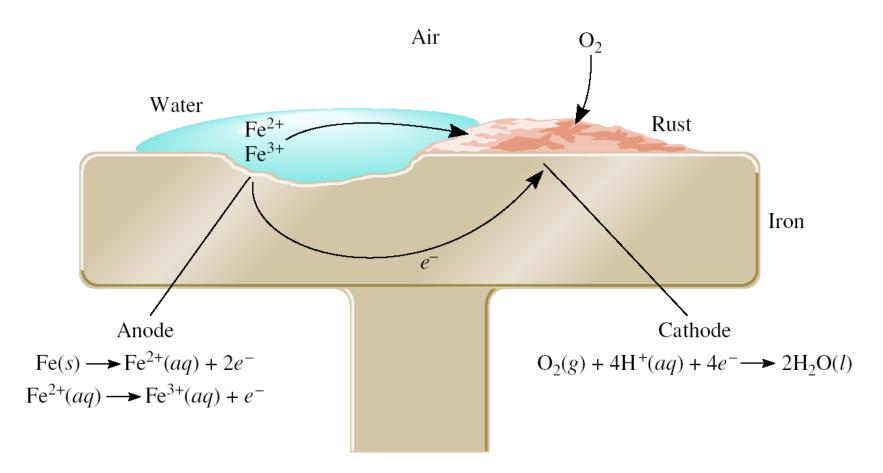
 $\text{Li} \longrightarrow \text{Li}^+ + e^ \text{Li}^+ + \text{CoO}_2 + e^- \longrightarrow \text{Li}^- \text{CoO}_2$

Solid State Lithium Battery

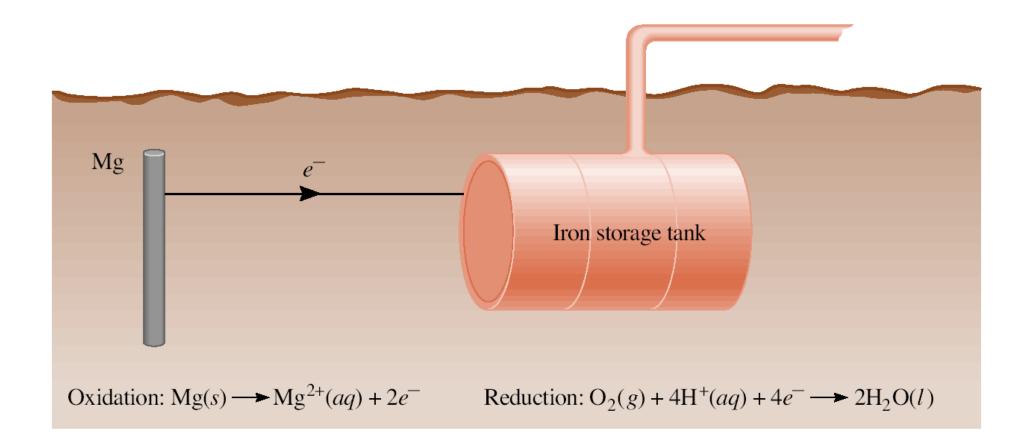

A *fuel cell* is an electrochemical cell that requires a continuous supply of reactants to keep functioning

Anode:	$2H_2(g) + 4OH^-(aq) \longrightarrow 4H_2O(l) + 4e^-$
Cathode:	$O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 4OH^-(aq)$
	$2H_2(g) + O_2(g) \longrightarrow 2H_2O(I)$

26

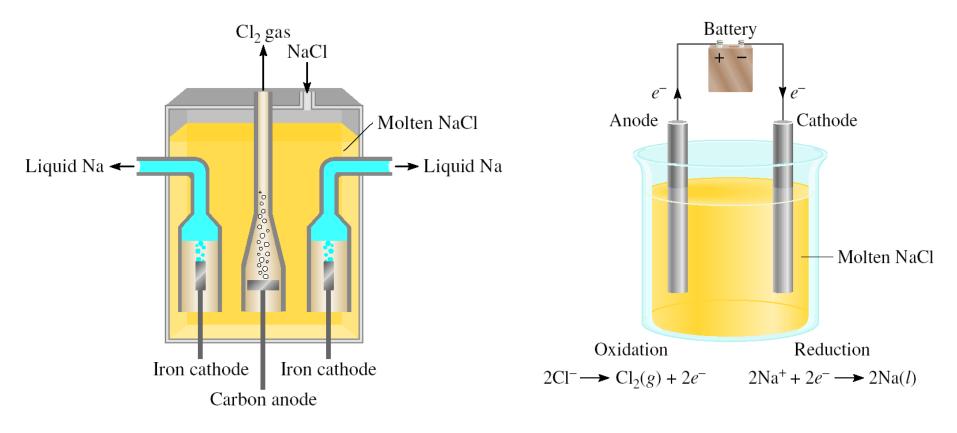

Chemistry In Action: Bacteria Power

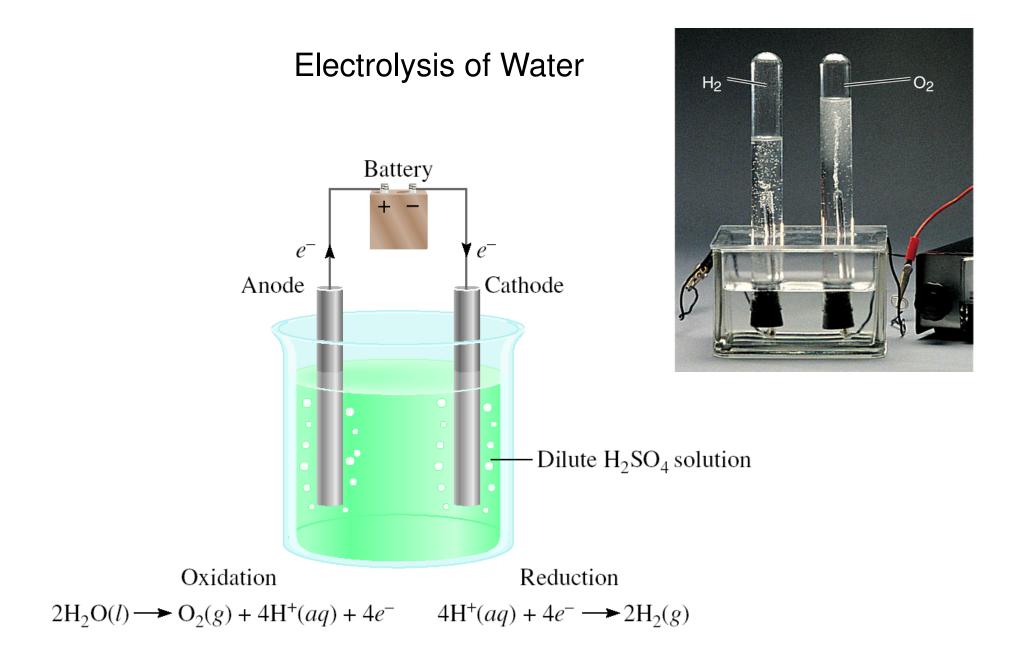
 $CH_3COO^- + 2O_2 + H^+ \longrightarrow 2CO_2 + 2H_2O$

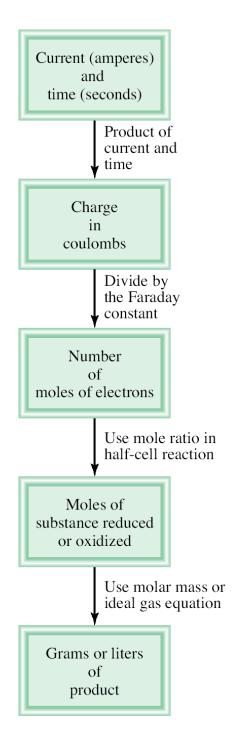


Corrosion

Corrosion is the term usually applied to the deterioration of metals by an electrochemical process.




Cathodic Protection of an Iron Storage Tank

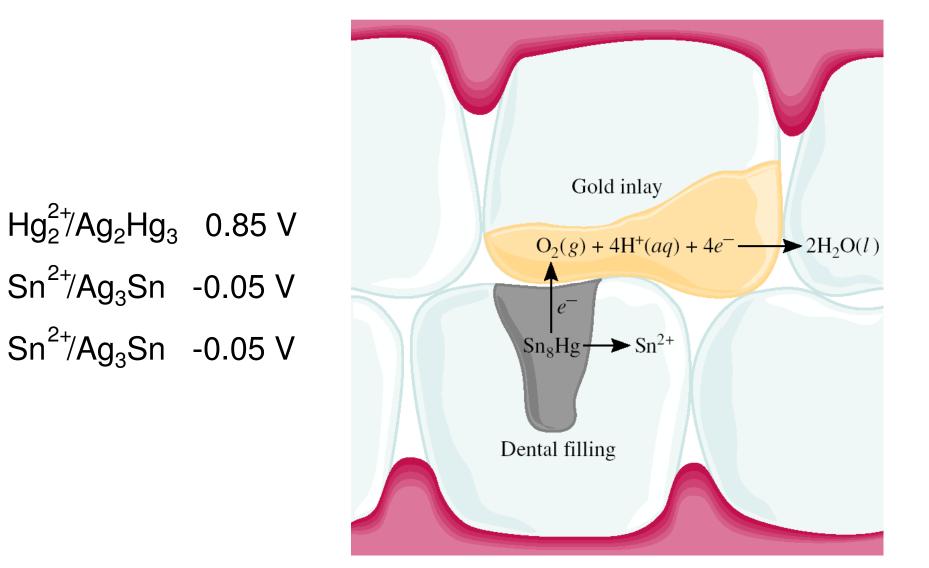


Electrolysis is the process in which electrical energy is used to cause a **nonspontaneous** chemical reaction to occur.

Electrolysis of molten NaCl

Electrolysis and Mass Changes

charge (C) = current (A) x time (s)


How much Ca will be produced in an electrolytic cell of molten CaCl₂ if a current of 0.452 A is passed through the cell for 1.5 hours?

Anode: $2\operatorname{Cl}^{-}(h) \longrightarrow \operatorname{Cl}_{2}(g) + 2e^{-}$ Cathode: $\operatorname{Ca}^{2+}(h) + 2e^{-} \longrightarrow \operatorname{Ca}(s)$ $\operatorname{Ca}^{2+}(h) + 2\operatorname{Cl}^{-}(h) \longrightarrow \operatorname{Ca}(s) + \operatorname{Cl}_{2}(g)$

2 mole $e^{-} = 1$ mole Ca

mol Ca =
$$0.452 \frac{2}{5} \times 1.5 \text{ hr} \times 3600 \frac{8}{\text{ hr}} \times \frac{1 \text{ mol e}}{96,500} \times \frac{1 \text{ mol Ca}}{2 \text{ mol e}}$$

= 0.0126 mol Ca
= 0.50 g Ca

Chemistry In Action: Dental Filling Discomfort

